
www.jsupskills.dev

Database Indexing
& Scan Strategies

Presented by :
jsupskills.dev

jsupskills

Understanding Index Types and
How Queries Use Them

https://jsupskills.dev/
https://jsupskills.dev/
https://jsupskills.dev/

jsupskills

Types of Database
Indexes

B-Tree Index (Default for most DBs)

Hash Index (Optimized for = searches)

Bitmap Index (Best for low-cardinality

columns)

Full-Text Index(Optimized for text

search)

GiST, GIN, and SP-GiST (Used in

PostgreSQL)

https://jsupskills.dev/

jsupskills

 CREATE INDEX idx_emp_id ON employees(id);

B-Tree Index

Default index type in most databases

Supports equality (=) and range queries

(<, >, BETWEEN)

Optimized for fast lookups (O(log N))

Example:

https://jsupskills.dev/

jsupskills

 CREATE INDEX idx_emp_id ON employees USING HASH(id);

Hash Index

Optimized for exact match queries

(WHERE id = 20)

NOT suitable for range queries (<, >)

Supported in PostgreSQL (not MySQL)

Example:

https://jsupskills.dev/

jsupskills

Bitmap Index

Efficient for columns with low

cardinality (few distinct values, e.g.,

gender).

Used in data warehouses and read-

heavy applications.

❌ Not commonly used in OLTP

databases (like MySQL, PostgreSQL).

https://jsupskills.dev/

jsupskills

Full-Text Index

Optimized for searching text data (LIKE

'%word%' is slow without it).

Used in MySQL (FULLTEXT), PostgreSQL

(GIN/GiST indexes).

 CREATE FULLTEXT INDEX idx_emp_name ON employees(name);

Example:

https://jsupskills.dev/

jsupskills

GiST, GIN, and SP-GiST
Indexes

GiST (Generalized Search Tree): Used

for full-text search and geometric data.

GIN (Generalized Inverted Index):

Optimized for text search and JSONB in

PostgreSQL.

SP-GiST (Space-Partitioned GiST): Used

for highly unbalanced data.

https://jsupskills.dev/

jsupskills

Database Scan
Strategies

(Using Indexes)

When an index exists, the database chooses
different strategies to access data
efficiently.

https://jsupskills.dev/

jsupskills

Index Scan (B-Tree)

The database uses an index to find rows

efficiently.

Works well when only a few rows match

the condition.

 EXPLAIN ANALYZE SELECT id FROM employees WHERE id = 20;

Example:

https://jsupskills.dev/

jsupskills

Index-Only Scan

When an index contains all the

requested columns, the database avoids

accessing the table.

Faster than an Index Scan.

 CREATE INDEX idx_emp_id_name ON employees(id, name);

 EXPLAIN ANALYZE SELECT id, name FROM employees
 WHERE id = 20;

Example (PostgreSQL):

https://jsupskills.dev/

jsupskills

Bitmap Index Scan

Used when multiple conditions require

different indexes.

Efficiently merges results from multiple

indexes.

 EXPLAIN ANALYZE SELECT * FROM employees
 WHERE id = 20 OR department = 'HR';

Example (PostgreSQL):

https://jsupskills.dev/

jsupskills

Sequential Scan
(Table Scan)

The database reads the entire table row

by row.

Happens when:

No index exists.

The query retrieves most rows (index

would be inefficient).

A Sequential Scan (Seq Scan) occurs when the
database reads the entire table row by row. The
query is very slow without an index. Use indexes to
improve performance and speed up queries.

https://jsupskills.dev/

jsupskills

Choosing the Right Scan
Strategy

Use indexes to avoid full table scans.

Analyze execution plans before

optimizing.

Consider composite indexes for multi-

column queries.

Use EXPLAIN ANALYZE to check query

performance.

https://jsupskills.dev/

www.jsupskills.dev

Thank You for Reading!

Optimize queries with the right indexing

strategy.

Use EXPLAIN ANALYZE to understand

query performance.

Avoid sequential scans for large

datasets.

Keep learning and optimizing!

https://jsupskills.dev/
https://jsupskills.dev/

